Валки – полые чугунные цилиндры с шейками (рабочую часть валка называют "бочкой", опорную – "шейкой"). Поверхность, в зависимости от назначения – гладкая, шлифованная или рифленая. Материал - высококачественный чугун (например, СЧ15-32). Отбеленная поверхность рабочей части (твердость HRC 40-60, глубина отбеленного слоя - 8÷18 мм.). Для получения отбеленного слоя отливку производят в вертикальную земляную форму, в которую на участке "бочки" вставлена стальная втулка. Внутренняя поверхность валка растачивается.

В валках более новой конструкции для улучшения условий теплообмена и увеличения равномерности нагрева по периферии рабочей части под отбеленным слоем просверлены каналы Ǿ 30-40 мм (расстояние между каналами 25-40 мм). Рабочую поверхность валков Вальцев шлифуют, каландров – кроме того полируют.

Основные параметры валка – диаметр бочки и её длина. Обычно из условий жёсткости толщина стенки бочки полого валка 0,25-0,35D (D – диаметр бочки), а длина бочки не более 2,5-4D. У большинства каландров отношение диаметра шейки к D-0,5-0,72, в случае подшипников качения – несколько меньше – до 0,5. Длина шейки обычно равна её диаметру.

Размеры валков нормализованы.

Подшипники

Подшипники скольжения состоят из чугунного (или литого стального) корпуса и вкладыша из бронзы. Вкладыш может быть разрезанным – нагруженный сегмент из бронзы, ненагруженный – чугунный. В некоторых конструкциях корпус охлаждается водой. Смазка – индустриальными маслами. Недостаток подшипников скольжения – возможность защемления вследствие прогиба от распорных усилий, поэтому предусматривается повышенный зазор (0,15% от диаметра) ухудшающий условия смазки.

Подшипники качения – стандартные 2-х рядные сферические, в отдельных случаях по специальному заказу. Смазка – консистентная централизованная (возможна и жидкими маслами при централизованной системе смазки и охлаждений).

Станины

Типы станин вальцев – открытые и закрытые (в России большей частью открытые). Поперечное сечение – тавровое и коробчатое. Тавровое более технологично и легче. Обе стойки станины устанавливаются на общей фундаментальной плите и скрепляются поперечными стяжками.

В каландрах применяются как правило цельные станины с проёмами для подшипников, которые на 50-80 мм. Больше D. Станины связаны внизу фундаментальной плитой, и вверху траверсой или стяжками. Сечение тавровое. В проёмах в местах установки подшипников – накладки. Материал станин каландров – СЧ12-28,15-32,18-36, реже стальные сварные, прочие с повышенными требованиями к прочности – из модифицированного чугуна СЧМ38-60. Материал станин вальцев – обычно высококачественный чугун, иногда отливка из стали 45.

Станина – наиболее дорогая и ответственная часть машины. Допускаемое напряжение при расчёте (учитывая возможность перегрузок и усталостных явлений) принимают: для стали 45 – 400-500 кг/см2, для чугуна (указанных марок) – 120-200 кг/см2.

Фундаментные плиты

Фундаментные плиты для вальцев – обычно из серого чугуна. В некоторых конструкциях – железобетона (масса арматуры ≈ 12%), изготавливаются в металлических формах.

Удельное давление на фундамент принимают 15-20 кг/см2. Практически высоту фундаментных плит принимают 0,5D. Диаметр болтов, крепящих станины к фундаментной плите, рассчитывают на усилие от опрокидывающего момента (практически он равен d=0,1D+(5-10мм)).

Расчет валковых машин.

1. Определение основных размеров. Вальцы.
Производительность вальцев периодического действия (за цикл) Qц:
Qц=(60 80) D л/цикл
60-большие. 85-малые.
Средняя производительность в час: Qср=Qц/ ц [л/ч],
Где ц-продолжительность цикла, час.
Отсюда по заданной производительности находим произведение D , а по рекомендованному отношению L/D-находим длину и диаметр валка, из стандартного ряда.

Производительность вальцев непрерывного действия: Q=V/ в [л/ч],
где V-объем материала, находящегося на вальцах, л. (V Qц)
в-время вальцевания.

Производительность каланра определяется размерами места и скоростью каландров.

Вальцы резинообрабатывающие. Описание общее.

Алгоритм выбора вальцев (внизу страницы).

Назначение вальцев.

Вальцы резинообрабатывающие предназначены для :

· Приготовления резиновых, силиконовых и пластических смесей открытым методом. (К закрытому методу приготовления смесей относятся закрытые резиносмесители );

· Разогрева смесей при питании экструдеров, каландров, прессов;

· Введения дополнительных ингредиентов в смеси, таких как сера, для подготовки смеси непосредственно перед процессом вулканизации;

· Очищения от примесей невулканизированной резины – это рифайнер, или рафинировочные вальцы РФ;

· Дроблении вулканизированной резины – это дробильные вальцы ДР ;

· Перетирание крупной крошки 2…5мм. в более мелкую 1,7…0,55мм.

Типы вальцев.

Вальцы выпускаются следующих типов: ПД – подогревательные (фрикция 1,27), СМ – смесительные (фрикция 1,08), СМ-ПД - смесительно-подогревательные (фрикция 1,17), РФ – рафинировочные (фрикция 2,55), ДР – дробильные (фрикция 2,55), РЗ – размалывающие (фрикция 4), ПР – промывные (фрикция 1,39), ЛБ - лабораторные(обычно фрикция 1,27).

Размеры вальцев.

Мыизготавливаем и поставляет вальцы из Китая начиная с диаметра валков d=150мм. и длины валков L =320мм.до диаметра валков d= 760мм. и длины валков L =2800мм. Поверхность валков может быть гладкая для смешения, подогрева, тонкого перетирания (измельчения) и регенерации (рафинирования) смесей, или рифлёная для дробления. С меньшим размером валков вальцы есть только в разделе Б /У вальцы .

ГОСТы и ИСО ( ISO ) на вальцы.

Для приготовления , получения технологии и сертификации резины в лабораторных условиях по мы рекомендуем использовать вальцыПД 320 160/160 с доп. опциями, если в них есть, конечно, необходимость (см.н иже). Они могут обозначаться как ЛБ, а в соответствии с требованиями ISO 2393 , оговорённых в возможно использовать вальцы СМ 350150/150 www. polgroup . ru / tex _ cm350. html .

Опции.

Для лаборатории возможно укомплектование вальцев дополнительными опциями : регулирование скорости вращения валков, укомплектовании дополнительной парой шестерён для изменения фрикции, цифровыми и стрелочными показывающими, записывающими и регистрирующими приборами потребляемой мощности, распорных усилий, величины зазора между валками, температуры валков, температуры перерабатываемого материала, времени вальцевания, возможность архивирования тех.п роцесса, возможность подключения к ПК по RS 485, или установка панели оператора с любыми заказываемыми функциями.

Стоимость и состав комплекта автоматики: показывающие и транслирующие на Панель оператора Weintek с тач-скрин 10" приборы, устанавливаемые на вальцах: потребляемой мощности, температуры двух валков, величины зазора между валками с двух сторон, времени вальцевания. Построение на экране графиков технологического процесса и потребляемой мощности от заданного времени вальцевания, при желании пуск и останов гл.д вигателя с панели, звуковой сигнал по окончании установленного времени вальцевания. Сохранения графиков в памяти с датой, временем, ФИО вальцовщика, номером мешки по порядку и номером мешки данного вальцовщика за этот день. С возможностью записи архива на флеш-носитель и просмотром архива и распечатки сохранённых графиков на любом ПК.

Цена автоматики 225.000-00 (Двести двадцать пять тысяч) рублей 00 копеек, в т.ч. НДС 18% рублей.

Регулирование фрикции на вальцах не целесообразно по трём причинам. Во-первых, потому, что фрикция определяет назначение (тип) вальцев – смесительные, подогревательные, или смесительно-подогревательные. Во-вторых, промышленные вальцы работают на одной фрикции, посему нет необходимости лаборатории выдавать нереальную технологию для производства. В третьих, уже давно научно изучено и доказано, что использование вальцев с индивидуальным приводом на каждый валок с частотным регулированием оборотов каждого валка, приводит к плавающей фрикции, что крайне плохо для технологического процесса, потому, что происходит затягивания под нагрузкой одного валка другим, нагрузка на быстроходный валок резко возрастает и эл.двигатель быстро выходит из строя - перегревается и сгорает.

Производительность вальцев, объём загрузки.

Производительность вальцев понятие относительное, поэтому в технических характеристиках этого параметранет, т.к. в зависимости от назначения вальцев, от типа резин, от мощности эл.двигателя, от времени смешения одной загрузки производительность может быть различна. Методика расчёта производительности (выписка из литературы) описана . Среднестатистические данные по загрузке материала на вальцы приведены в таблице. Для определения производительности вальцев необходимо знать время цикла смешения (обычно 8…12 минут). Умножая объём загрузки на количество циклов за 1 час и умножив затем на удельную плотность материала, получим производительность кг. /ч ас.

Вальцы СМ, ПД, ЛБ, ДР , РФ

Объем загрузки, литров(дм 3) за цикл

Истирание в среднем, кг /час

Длина валка

Диаметр

валков

Длина раб.ч асти валков

Мин.

Мах.

ПД 300 150/150

3

ПД(ЛБ) 320 160/160

320

160

290

4

ПД 350 150/150

4

ПД 450 225/225

8

ПД 600 400/400

17

ПД 630 315/31522 кВт

630

315

540

9

ПД 630 315/31530 кВт

630

315

540

12

ПД 700 300/300

15

ПД 800 315/315

18

ПД 800 550/550

32

ДР 800 550/550

ДР 800 490/610

490/610

ПД 900 360/360

24

ПД 1000 400/400

1000

29

ПД(ХК) 1200 450/450

1200

1000

50

ПД 1500 550/550

1500

550

1350

63

ПД 1500 650/650

1500

1350

75

ПД 1500 660/660

1500

650

1350

80…120

ПД 2100 660/660

2100

660

1940

109

ПД 2800 760/760

2800

2630

170

При увеличении мощности двигателя в некоторых моделях возможно увеличение объёма загрузки.

Валки и их нагрев.

Валки изготавливаются из чугуна с твёрдостью валков HRC э 46…54, или стальные с HRC э 50…55 с шероховатостью поверхности √0,63 «из под шлифовки» и имеют внутри полость для разогрева/охлаждения. Полость может быть получена методом центробежного литья (чугун), методом сварки трубы и цапф, методом периферийного сверления для улучшения теплопередачи. В полость валка может быть подан теплоноситель через краны и вращающиеся муфты в зависимости от необходимой технологической температуры валков:

· вода горячая до температуры 80°С.;

· вода холодная для охлаждения валков;

· пар до температуры 150°С.;

· масло до температуры 220°С.

· и другие теплоносители.

Вальцы в стандартной поставке не укомплектованы системой нагрева теплоносителя. Станции терморегулирования заказываются отдельно , или изготавливаются и монтируются самостоятельно на месте при отсутствии магистрального паропровода.

Для пластических масс целесообразно применять вальцы с эл.обогревом валков , трубчатые электронагреватели (ТЭН) установлены непосредственно в валках. Снятие температуры производится бесконтактным датчиком температуры с поверхности валка. Регулировка температуры каждого валка производится с помощью цифрового ПИД - регулятора. Учитывая, что охлаждение на таких вальцах отсутствует, применя ются они в основном для приготовления композиционных материалов. Использование масла в качестве теплоносителя крайне затруднительно т.к. сложно найти насос, который будет стабильно работать при таких больших температурах (обычно все останавливаются уже на 150°С.и более экономически затратное, т.к. при косвенном нагреве теплоноситель должен быть нагрет на 15°С. больше из-за потерь в трубопроводах. Вальцы с эл.обогревом не рекомендуем использовать для резиновых смесей по несколькимпричинам. Во первых имеется небольшая неравномерность нагрева поверхности валка, во-вторых более дорогие, в третьих сложность ремонта эл.нагревателей, в четвёртых - невозможность охлаждения валков.

Расчёт мощности парогенератора, или станции ерморегулирования для нагрева валков резинообрабатывающих вальцев.

Длина валков,

мм .

Диаметр валков, мм .

Изготовитель

Установленная мощность эл.нагревателей на 2-х валках

Площадь пов-ти 2-х валков, кв.см.

Мощность, Вт .

на 1 кв.см.

Расчётная мощность на два валка, кВт.

Где расположены эл.н агреватели

Скорость вращения заднего валка, мах, м /мин

Китай

3 297

1,64

5,4

внутри валков

Китай

3 297

3,03

10,0

в термостанции

Россия

3 215

2,24

7,2

внутри валков

Россия

12 463

2,24

27,9

Китай

12 463

2,24

27,9

22,68

Китай

20 347

0,98

20,0

внутри валков

20,53

1000

Китай

25 120

2,24

56,3

1200

33 912

2,24

75,9

1500

Россия

51 810

2,24

116,0

1500

Китай

51 810

2,24

116,0

1500

62 172

2,24

139,2

2100

87 041

Блога два с половиной года назад была затронута тема расчета геометрии деталей, получающихся в процессе вальцовки. В этой публикации речь пойдет об определении усилий , возникающих при вальцовке листового металла. Тема интересная...

И важная не только для специалистов эксплуатирующих листогибочные вальцы, но и для всех, кто, так или иначе, связан с процессом гибки на листогибочных и обычных прессах.

Во всех расчетных формулах для определения усилия гибки листов в качестве одних из главных определяющих параметров фигурируют или предел прочности, или предел текучести металла листовой заготовки. Известно, что в процессе изгиба область, подверженная деформации, упрочняется. Но на сколько? Иногда это упрочнение учитывают повышающим предел текучести постоянным коэффициентом, как, например, в . В программе, представленной в этой статье, повышение прочности будет определено и учтено аналитически по расчетной кривой деформационного упрочнения .

В паспортах листогибочных валковых машин в последнее время обычно указывается максимальная ширина и толщина изгибаемой листовой заготовки из стали С255 и наименьший радиус вальцовки. А на практике постоянно возникает вопрос – «потянут» ли вальцы менее широкий, но более толстый лист, да еще, возможно, и из другой марки стали? Вопрос не праздный – ошибка может привести к поломке станка и дорогостоящему последующему ремонту.

Включаем MS Excel и начинаем рассмотрение решения озвученной задачи на примере вальцовки листового металла на трехвалковой листогибочной машине.

Расчет в Excel моментов и сил при вальцовке.

Задача:

Определить возможность гибки и правки обечайки диаметром 1600 мм и длиной 1500 мм из листовой стали С345 (09Г2С) толщиной 18 мм на вальцах марки И2222.

Из паспортных данных машины известно, что на ней можно изготовить обечайку минимальным диаметром 440 мм и длиной 2000 мм из листовой стали С255 (Ст3 сп5) толщиной 16 мм.

Вальцовка листового металла на трехвалковой машине с подвижным в вертикальной плоскости верхним валком показана на схеме, из которой очевидно, что наиболее нагруженным является верхний валок.

Задачу решим следующим образом:

1. Определим в расчете №1 усилие на верхнем валке при гибке и правке обечайки с предельными размерами из паспорта. То есть узнаем возможности листогибочной машины И2222.

2. В расчете №2 вычислим силы, действующие на наиболее нагруженный верхний валок при гибке и правке интересующей нас короткой трубы из стали С345.

3. Сравним значения сил и сделаем выводы.

Расчет №1:

Расчет №2:

Вывод:

Так как усилия на верхнем валке в расчете №2 немного меньше усилий из расчета в Excel №1, то следует вывод: на вальцах И2222 можно изготовить трубу из стали 09Г2С диаметром 1600 мм, длиной 1500 мм с толщиной стенки 18 мм.

Формулы, использованные в расчете:

12. ε т =[σ т ] / E +0,002

13. m = lg ([σ в ] /[σ т ] )/ lg (ε в / ε т )

14. A =[ σ в ] /(g* ε в m )=[ σ т ] /(g* ε т m )

15. n =A *2 (2,59-m ) /(E/g *(2+m ))

16. R о =R +s /2

17. r о = R о /s

18. R г = R о /(1+n *r о (1-m ) )

19. M г R г m )*g

20. α г =arcsin ((L /2)/(R г +D /2+s /2))

21. P г =2*M г /(R г *tg (α г ))

22. R пр =k ф * R г

23. M пр =(A *b *s (2+m ))/(2 (m +1) *(2+m )* R пр m )*g

24. α пр =arcsin ((L /2)/(R пр +D /2+s /2))

25. P пр =2*π *M пр /(R пр *((π- α пр )*tg (α пр )+1-1/cos (α пр )))

Заключение.

Расчет в Excel был выполнен без учета веса верхнего валка. Если учесть этот момент, возможности листогибочной машины увеличатся на 2…3%.

Механические свойства сталей в пунктах 4…7 расчета можно найти в ГОСТ 27772-88 (ε т = δ 5 ).

При правке заваренных обечаек изгибающий момент и усилие на верхнем валке возрастают из-за неправильной геометрии подогнутых краев заготовки и усиления сопротивления замкнутого контура.

Коэффициент формы обечайки k ф в пункте 11 можно определить по подсказке в примечании к ячейке D13.

Этот коэффициент зависит от способа подгибки краев заготовки:

k ф =0,75…0,85 – при вальцовке без подкладного листа с плоскими краями;

k ф =0,80…0,90 — при вальцовке без подкладного листа по радиусу;

k ф =0,85…0,95 — при вальцовке с подкладным листом:

k ф =0,95…1,00 – при гибке на прессе в штампе.

В завершении статьи определим коэффициент упрочнения, о котором упоминалось в самом начале, для каждого из рассчитанных выше вариантов.

K 1 = M г1 /(W x 1 *[σ т ] 1 )=37783899/(2000*16 2 /6*245)=1,81

K 2 = M г2 /(W x 2 *[σ т ] 2 )=42658644/(1500*18 2 /6*325)=1,62

С уменьшением радиуса гибки листа логично нарастает упрочнение. Используя параметры кривой деформационного упрочнения, можно более точно определять усилия и при V-образной гибке на листогибочных прессах.

Смею предположить, что при использовании предложенной программы вальцовка листового металла станет для вас более понятной и безопасной.

Возможно под заказ развитие программы для других схем вальцовки (трехвалковые машины с подвижными нижними валками, четырехвалковые машины, гибка конических деталей).

Прошу уважающих труд автора скачивать файл с расчетной программой после подписки на анонсы статей в окне, расположенном в конце каждой статьи или в окне вверху страницы!

Желающие поддержать развитие блога могут это сделать, перечислив средства на любой (в зависимости от валюты) из указанных кошельков WebMoney : R 377458087550, E 254476446136, Z 246356405801.

- Вальцы состоят из 2 или 3 параллельно расположенных полых валков, вращающихся навстречу друг другу.

- Применяются для пластикации каучука, приготовления резиновых смесей, разогрева их перед каландрованием или шприцеванием, а также в производстве регенерата.

Современные вальцы имеют измерительные приборы и вспомогательные устройства, но имеют и серьезные недостатки: низкая производительность, отсутствие герметичности, опасность при обслуживании. Вальцы вытесняются закрытыми машинами.

- Классификация по функциональному назначению.

Вальцы дробильные (Др.) – для дробления старой резины. Вальцы подогревательные (Пд.) – для увеличения пластичности и подогрева резиновых смесей. Вальцы промывочные (Пр.) – для промывки каучука водой. Вальцы размалывающие (Рз.) – для размола резиновых отходов. Вальцы рафинирующие (Рф.) – для очистки регенерата и резиновых смесей от посторонних включений. Вальцы смесительные (См.) – для смешения каучука с различными ингредиентами, для приготовления и листования резиновых смесей. Вальцы смесительно-подогревательные (См.-Пд.) – для пластикации каучука, смешения его с различными ингредиентами и подогрева резиновых смесей. Вальцы лабораторные (Лб.) – для производства лабораторных работ.

- Классификация по конструктивным признакам

По размерам валков и скорости их вращения: производственные – легкого типа D / L : 300/800; 500/800, среднего типа D / L : 550/1500, тяжелого типа D / L : 660/2100; лабораторные.

По числу валков: 2 и 3 (Рф.).

По типу привода: индивидуальный, сдвоенный и групповой (3, 4, реже 5).

По величине фрикции (отношение скорости вращения заднего валка к переднему): Др. – 2.55, 3.08, 3.25; Пд. – 1.22, 1.25, 1.27, 1.28, 1.29; Пр. – 1.39; Рз. – 4.00; Рф. – 2.55; См. – 1.07, 1.08, 1.11, 1.27; См.-Пд. – 1.14; Лб. – 1-4. Обозначение фрикции: 1:1.22.

- Условное обозначение содержит наименование, длину и диаметры валков (переднего и заднего), расположение привода (правое – П, посередине – С, левое – Л) и ГОСТ. Вальцы Лб 100 50/50 П ГОСТ…; Вальцы Лб 200 100/100 ГОСТ… с индивидуальным приводом на каждый валок; Вальцы См 2100 660/660 Л ГОСТ…; Вальцы См 2100 660/660 Л с переключением фрикции ГОСТ…; Агрегат вальцов Рф 800 490/610 С 2 ГОСТ…

1.3.2. Схема работы вальцов.

Обрабатываемый материал (каучук или резиновая смесь) в виде кусков или пластин загружают и многократно пропускают через зазор между валками.

Материал втягивается в зазор под действием сил трения и в результате сцепления между материалом и поверхностью авлков.

Степень деформации и степень захвата материала определяется углом захвата =10-45 о. Дуга, стягивающая этот угол, называется дугой захвата. Втягивающая сила Р>0 , если > ; – угол трения; = tg – коэффициент трения.

При работе реализуются деформации сдвига и среза; в зоне зазора всегда имеется запас материала.

После выхода из зазора смесь отклоняется к переднему валку, т.к. он вращается медленнее заднего; это обусловлено еще и соображениями техники безопасности. Образовавшийся на переднем валке слой смеси называют шкуркой или шубой.

Зазор регулируется в пределах до 10-12 мм.

Чем больше фрикция, тем более интенсивно происходит перемешивание и тем больше температура.

То же относится и к скорости, которая находится в интервале 35-40 м/мин. Увеличение скорости лимитируется соображениями техники безопасности.

1.3.3. Устройство вальцов.

Два полых валка вращаются навстречу друг другу в подшипниках качения, установленных в станинах, которые стянуты траверсами.

Траверсы образуют прямоугольные окна, в которых установлены корпуса подшипников валков.

Станины установлены на фундаментной плите.

Для измерения величины зазора между валками корпуса подшипников переднего вала могут перемещаться по направляющим вдоль станины. Перемещение осуществляется нажимным винтом с помощью механизма регулировки зазора.

– Механизм приводится в действие вручную маховиком или рукояткой или от электродвигателя.

Нажимной винт упирается в корпус подшипника переднего валка через предохранительную шайбу, которая пробивается при увеличении распорных усилий.

При большом отодвигании или сдвигании валков срабатывают концевые выключатели.

В станинах есть диски, указывающие величину зазора.

Имеются ограничительные стрелки, чтобы не засорять подшипники.

Двигатель передает усилие через приводные и фрикционные шестерни.

Смазка осуществляется вручную или насосом от масляной станции, что проще.

Имеется аварийный останов, прекращающий подачу электричества в двигатель. После его срабатывания валки проходят четверть оборота при незагруженных вальцах и останавливаются мгновенно – при загруженных.

1.3.4. Основные узлы.

- Фундаментная плита – чугунная отливка с усилением ребрами жесткости, 3.5 т.

Можно делать из железобетона с каркасом из арматурной стали (10-12% по массе).

- Станина – стальная, состоит из двух частей – собственно станины и траверсы – верхней части, 800-1350 кг. Должна быть рассчитана на распорное усилие 14 кН на 1 см длины рабочей части валка.

- Валки – основной узел – отливается в кокиль из чугуна, с поверхности отбеливается на глубину 8-25 мм.

Бочки, в основном, цилиндрические, Рафинирующие вальцы имеют бомбировку. Передний (диаметр 490 мм) – 0.151 мм, задний (диаметр 610 мм) – 0.075 мм.

Дробильные и промывочные вальцы имеют рифленую поверхность (рифление под углом 4-15 о к продольной оси).

Охлаждение валков – обычно температура валков должна быть ~60 о С. Температура воды не более 12-14 о С. Летом водопроводную воду надо охлаждать.

При пластикации НК и при переработке смесей на его основе Температура переднего валка должна быть на 5-10 град. Меньше температуры заднего – тогда смесь пойдет на передний валок.

При обработке смесей из СК Температура переднего валка должна быть на 5-10 град. Больше температуры заднего.

Два способа охлаждения – заполнение валка водой и периодическая ее замена -–открытый способ. С помощью разбрызгивающих устройств на расстоянии 150-200 мм друг от друга.

Расход воды 1.2-2ю5 м 3 /час – малые, 5-12 – средние, 8-18 – большие.

Есть конструкции с охлаждением подшипников.

- Механизм регулировки зазора. Зазор 0.05-12 мм. Нажимной винт вращается в стальной гайке, закрепленной в станине. Обратный ход может осуществляться электродвигателем или за счет распорных усилий.

- Ножи (их два) монтируются в каретке и могут перемещаться вдоль валка.

- Устройства для перемешивания и охлаждения смеси. Смесь срезается с переднего валка и заправляется в зазор между охлаждающим барабаном и прижимным роликом и снова направляется в зазор – она перемешивается, интенсивно перемещаясь по длине с помощью специальных роликов и каретки – сток-блендерс. Такая система применяется для доработки резиновых смесей после РС.

- Особенности различных типов вальцов. Рф (рафинирующие) брекер-вальцы – для предварительной очистки, рефайнер-вальцы – для окончательной очистки. Съем смеси осуществляется с заднего валка с закаткой в рулоны. Поверхность гладкая бочкообравзная, включения уходят на кромки. Различные диаметры валков. Фрикция 1:2.55. Др (дробильные) – размеры бочек и фрикция как у Рф. Пр (промывочные) – рифленая поверхность, но одинаковые диаметры валков.

1.3.5. Распределение напряжений в материале в зазоре между валками.

- Допущения: ламинарный режим течения, условие прилипания, ньютоновская жидкость.

Уравнение Навье-Стокса.

Существует 2 принципиально различные области течения . До границы двух зон (выше) имеет место поступательное и встречное течение; ниже – только поступательное. Между этой границей т самым узким сечением – пробковый режим течения – силы, возникающие вследствие гидростатического давления и действующие с одной стороны сечения, уравновешиваются силами, действующими с другой стороны сечения.

Напряжение сдвига в этом сечении равно нулю, а давление максимально – материал движется как твердая пробка без деформации.

- Распределение температур в валковом зазоре. Два пика вблизи поверхностей, обусловленные наличием охлаждения.

1.3.6. Распорные усилия.

- На основе закономерностей пластической деформации материала между валками.

Распорное усилие – величина силы, стремящейся раздвинуть валки при прохождении между ними деформируемого материала.

,

где – относительное уширение материала, = b к / b н (можно считать =1), b н – начальная ширина, b к – конечная ширина, k – эмпирический коэффициент, Т – предел текучести вальцуемого материала, h нс –толщина нейтрального слоя, h нс (h н h к ) ½ , h н и h к – толщина материала до и после вальцевания, = / lg ( /2) , – коэффициент трения, – угол захвата, R – радиус валка, см, h =2 R (1- cos ) – линейное обжатие.

- На основе закономерностей упругой деформации.

,

где E – модуль упругости.

При этом силы трения не учитываются, после прохода через зазор толщина восстанавливается.

- На основе гидродинамической теории вальцевания.

Распорное усилие разбивается на две составляющие: 1) направленное против вектора скорости вращения (горизонтальная составляющая), 2) направленное в сторону вектора скорости (вертикальная составляющая)

,

где Т – сила трения, l –длина дуги захвата, f – фрикция, v 1 , v 2 – линейная скорость переднего и заднего валка, L – длина валка, В 1,2 – коэффициенты, n – реологический коэффициент/

Если P 1 и P 2 известны, то координату точки приложения равнодействующей можно определить как

где эф – коэффициент эффективной вязкости, h к – минимальный зазор.

Для ориентировочных расчетов P = qL , q = 400 кН/м (для НК), для наполненных смесей q = 600-1100 кН/м.

Методика, основанная на теории подобия.

Н

Н

Н

где В=( h н h 2 )/( h н - h 1 ) – восстанавливаемость, М=( h н h 1 )/( h н + h 1 ) – мягкость, h н – первоначальная высота образца, h 1 – высота под нагрузкой, h 2 – высота после разгрузки, Пл к – конечная пластичность

Значения коэффициентов:

Например, для СКН-40:

Р=18059860.66 1.4 2.1 0.7 0.002 0.1 0.48 –0.4 =1.22 МН=122 т.

1.3.7. Потребляемая мощность.

- Методика, основанная на теории пластической или упругой деформации.

кВт

где М – момент сопротивления вращению валков, Нм, М=М р тр, М р – момент для преодоления сопротивления деформации материала, М р = PDsin ( /2) , P – распорное усилие, – угол захвата, М тр – момент сопротивления трению в подшипниках с учетом силы тяжести валков и распорных усилий, М тр = ( P + G в ) d , – коэффициент трения в подшипниках, G в – сила тяжести вала, d – диаметр цапфы валка, n – средняя скорость вращения валков, – КПД зубчатой пары.

- Методика, основанная на гидродинамической теории вальцевания.

где – окружная скорость быстроходного валка, с –1 .

Значения коэффициентов:

Например, для СКН-40:

N=0.069861.8750.66 2 2.1 0. 6 0.002 0.1 0.48 –0. 7 1.22 –0.25 =65 кВт.

1.3.8. Привод.

Вальцы могут иметь индивидуальный привод, спаренный и групповой.

Привод может располагаться с правой и с левой стороны от рабочего места.

В начале цикла обработки мощность в 1.5-2 раза больше мощности, потребляемой вальцами. Поэтому мощность электродвигателя надо выбирать с учетом этой пиковой нагрузки.

При индивидуальном приводе устанавливают синхронный двигатель, который при недогрузке может работать как компенсатор и улучшать cos.

Может быть отдельный двигатель на каждый валок (в лабораторных вальцах).

Для соединения выходного вала редуктора с трансмиссионным валом используются муфты , они допускают некоторый перекос соединяемых валов, обеспечивают эластичность передачи. Применяют зубчатую муфту Фаста, пальцевую муфту Франке, пружинную муфту Биби.

Могут быть и резиновые, и резино-пневматические муфты, обеспечивающие плавную работу привода и некоторую несоосность осей.

Для вальцов с большим раздвигом валков и при больших распорных усилиях используют блок-редуктор (до 20 кН/см). В нем размещаются приводные и фрикционные шестерни. Блок-редуктор соединен двумя выходными валами через универсальные шарнирные устройства с валками вальцов.

Стоимость блок-редуктора гораздо больше, но он имеет много преимуществ – шестерни и подшипники работают в более благоприятных условиях.

1.3.9. Особенности монтажа.

Раньше вальцы устанавливали на специальном фундаменте и закрепляли фундаментными болтами.

Вибрации передаются конструктивным элементам здания.

Перенос вальцов с одного места на другое связан с большим объемом строительных работ

Применяют виброизолирующие опоры – без специального фундамента и болтов.

1.3.10. Выбор вальцов.

Подогревательные вальцы в индивидуальном исполнении имеют мощность двигателя 180 кВт, а агрегат 320 кВт. Экономия 40 кВт.

В групповом приводе нагрузку вальцов можно сделать более равномерной. Всякая перегрузка нежелательна.

Нельзя загружать сразу несколько вальцов при групповом приводе.

Двигатели должны быть в пылезащитном исполнении.

Для снижения пиковых нагрузок используют предварительный подогрев (в горячей воде) для жестких смесей (протекторы, катки и др.).

1.3.11. Производительность вальцов.

- Периодический режим.

кг/час,

где V –литражная емкость или объем единовременной загрузки, в литрах: V =(0.0065-0.0085) D 1 L , D 1 – диаметр переднего валка, см, L – его длина, см, – плотность кг/дм 3 , –коэффициент использования машинного времени (0.85-0.9), t ц = t 1 + t 2 + t 3 – время цикла (загрузка, пластикация, выгрузка) в мин.

При пластикации каучука:

мин,

где Пл – изменение пластичности по Карреру, i – зазор, см, u – окружная скорость быстроходного валка, м/мин, f – фрикция, A , n , m – коэффициенты.

Значения коэффициентов:

В запасе находится при вальцевании приблизительно столько же смеси, сколько на валке.

- Непрерывный режим.

где 0.75 – коэффициент заполнения канавок рифления обрабатываемым материалом, F – площадь сечения канавки, м 2 , l – шаг рифления, т.е. расстояние между соседними канавками, м, k =1 или 2 в зависимости от того, сколько валков с рифлениями.

1.3.12. Система охлаждения.

Система охлаждения бывает закрытой (сейчас не применяется) и открытой. Преимущество последней – высокие значения коэффициента теплоотдачи в тонких струйках из форсунок (малый диаметр струю, высокая скорость, большое значение критерия Рейнольдса) и из-за частичного испарения воды при контакте с горячими стенками.

- Тепловой баланс.

где Q 1 = N t ц – тепло, выделяющееся за счет внутреннего трения в материале, кДж, N – мощность двигателя, кВт; – КПД привода, t ц – время цикла, с; Q 2 – дополнительно подводимое тепло, кДж; Q 2 = m h t ц – с паром, m – расход пара, кг/с, h – изменение энтальпии пара, кДж/кг; Q 3 = GC Tt ц – тепло, пошедшее на нагрев резиновой смеси, кДж, G – производительность вальцов, кг/с, С – теплоемкость резиновой смеси, кДж/(кгК), T – изменение температуры смеси, К; Q 4 = F ( T пов T в )+с 0 F (( T пов /100) 4 –( T в /100) 4 ) – потери тепла в окружающую среду, слагающиеся из конвективных и лучистых (считается для каждого валка), кДж, – коэффициент теплоотдачи при естественной конвекции от стенки вальцов к воздуху, кВт/(м 2 К), F – поверхность теплообмена, м 2 , T пов и T в – температура поверхности валка и окружающего воздуха, соответственно, К, с 0 – коэффициент излучения абсолютно черного тела, с 0 =5.6710 -3 кВт/(м 2 К 4), – степень черноты; Q 5 = m в С в T в t ц – тепло, унесенное охлаждающей водой, кДж, m в – расход воды, кг/с, С в =4.2 кДж/(кгК) – теплоемкость воды, T в – изменение температуры воды, К.

1.3.13. Установки для приема и охлаждения ленты резиновой смеси.

- Фестонного типа. Лента срезается с вальцов или ЧМ с листовальной головкой, проходит ванну с каолиновой суспензией и подается в фестонообразователь. Фестон получается в результате прижатия ленты резиновой смеси к штанге конвейера рычагом, который приводится в действие пневмоцилиндром. Как только образуется фестон, рычаг перемещается на один шаг. Далее смесь поступает в камеру, охлаждаемую воздухом с помощью вентилятора. Размер камеры рассчитан на 4 беча. Охлажденные фестоны подаются к узлу укладки, где лента разрезается на листы заданной длины, которые подаются на поддоны, установленные на весах.

Недостаток этой системы – громоздкая, нет возможности закатывать смесь в бабины для последующей подачи к ЧМ. Последний недостаток устранен на некоторых конструкциях (фирма "Пирелли").

В новых системах лента шириной 0.6 м срезается с вальцов, обрабатывается водной каолиновой суспензией, затем разрезается надвое вдоль дисковым ножом. Затем охлаждается вентиляторами. Скорость движения – 8-38 м/мин, количество вентиляторов 4-7. Дольше режется на ленты или закатывается в бобины. Существуют такие установки частично вертикального типа, весьма компактные

- Ленточного типа. При поточном производстве лента с вальцов идет на каландры или ЧМ по ленточному транспортеру без дополнительного охлаждения. Предварительно она разрезаются на узкую ленту вдоль или поперек (не до конца).

Описание конструкции и работы вальцев (Лист 1)

Различные типы вальцев имеют в основе одинаковый принцип действия и ряд сходных узлов (сборочных единиц) и деталей. В общем вальцы (рис. 1) представляют собой машины, основными рабочими органами которой являются два полые валка(7) и (20), расположенные в горизонтальной плоскости и вращающиеся навстречу друг другу. Некоторые вальцы, используемые при регенерации резины, имеют три валка. . Валок(7) называется передним, так как он расположен с передней стороны рабочего места вальцев. Валок(20) называют задним. Рабочая поверхность валков может быть гладкой или рифленой в зависимости от назначения вальцев. Каждая из двух станин вальцев стянута сверху траверсой (поперечинами) (3) и помещается на массивной чугунной фундаментной плите(13). Фундаментная плита с нижней стороны имеет ребра жесткости. У вальцев с групповым приводом на фундаментной плите под каждой из станин устанавливаются трансмиссионные подшипники.

В четырех углах фундаментной плиты расположены выступающие тумбы для установки и крепления станин вальцев. Крепление станин(12) вальцев к фундаментной плите производится при помощи болтов и специальных клиньев. Высота поверхности рабочего пола обычно находится на уровне верхней части тумб фундаментной плиты. Для регулировки параллельности установки двух станин и увеличения жесткости конструкции вальцев имеется два стяжных болта. Станины()12 и поперечины (траверсы) (3) вальцев отливаются из чугуна и должны иметь 5--6-кратный запас прочности против наибольших усилий, развиваемых при работе. В каждой станине вальцев устанавливается по два валковых підшипника(2) (один от переднего, а другой от заднего валков). Подшипники заднего валка(20) неподвижно прикрепляются к соответствующей станине при помощи болтов. Подшипники переднего валка(7) установлены так, что их можно передвигать по станине для регулировки величины зазора между валками. Корпусы валковых подшипников скольжения для улучшения условий работы имеют специальные полости для охлаждения.

Рис. 1

1 -- передний валок; 2 -- задний валок; 3 -- ограничительные стрелки; 4 -- приводная шестерня; 5, 17 -- верхние траверсы; 6 -- указатель величины зазора между валками; 7 -- механизм регулировки зазора; 8, 12 -- станины вальцев; 9, 14 -- подшипники трансмиссионного вала; 10 -- соединительные болты; 11 -- фундаментная плита; 13 -- окна для заворачивания фундаментных болтов; 15 -- трансмиссионный вал; 16 -- передаточные (фрикционные) шестерни; 18 -- колпачковая масленка; 19 -- конечный (аварийный) выключатель; 20 -- штанга аварийного выключателя.

Регулировка величины зазора между валками производится при помощи специальных механизмов(14), снабженных предохранительными устройствами. На каждой из станин имеются указатели величины зазора для устранения перекоса валков. Валки изготавливаются полыми из специального высококачественного чугуна с закаленной поверхностью рабочей части и расточкой внутренней поверхности, на которую подается охлаждающая вода (при помощи специальной системы охлаждения). Для предотвращения возможности попадания перерабатываемого материала в валковые подшипники на вальцах устанавливаются защитные раздвижные щитки-стрелки одна половина которых крепится к переднему, а другая к заднему подшипникам валков.

Специальная конструкция стрелок(4) обеспечивает достаточную надежность в работе. Для смазки поверхностей трущихся пар вальцы снабжены специальной системой с рядом смазывающих устройств. На поперечинах станин вальцев смонтированы устройства(5) для аварийного останова. Станины и траверсы, воспринимающие распорные усилия при работе вальцев, отлиты из стали. Перемещение передних подшипников осуществляется при помощи двух механизмов регулировки зазора(14). Механизм регулировки зазора (рис. 2) расположен на станине со стороны переднего валка. Нажимной винт 1 вращается в стальной гайке 12, закрепленной в станине вальцев.

На конце нажимного винта 1 смонтировано предохранительное устройство, которое состоит из предохранительной шайбы 9, крышки 11, матрицы 8, пуансона 10 и корпуса 7, закрепленного болтами на корпусе подшипника 6 валка вальцев.

Рис. 2.

1 -- нажимной винт; 2 -- червячный редуктор; 3 -- эластичная муфта; 4 -- электродвигатель; 5 -- указатель величины зазора; 6 -- корпус подшипника валка; 7 -- корпус предохранительного устройства; 8 -- матрица; 9 -- предохранительная шайба; 10 -- пуансон; 11 -- крышка; 12 -- гайка нажимного винта; 13 -- станина вальцев; 14 -- маховичок ручной доводки.

Предохранительное устройство служит для предохранения от разрушения валков и станины при значительном увеличении распорных усилий между валками вальцев. В случае перегрузок (попадание в зазор металлических предметов и др.) предохранительные шайбы, рассчитанные на определенное усилие, срезаются, передний валок перемещается, увеличивая зазор между валками, и вальцы автоматически останавливаются. Чтобы предохранительное устройство работало надежно, необходимо правильно рассчитать предохранительную шайбу. Механизм регулировки зазора имеет также маховичок 14 для ручного привода на случай выхода из строя электродвигателя. Зазор между валками вальцев можно регулировать в пр еделах от 0 до 10 мм.

Для обеспечения безопасности работы на вальцах имеется механизм аварийного останова(5). Он состоит из четырех стоек, между каждыми двумя из которых имеются тросики или штанги, параллельные осям валков вальцев. Один конец каждого тросика закреплен неподвижно, а второй соединен с конечным выключателем. При нажатии на тросик (штангу) происходит отключение электродвигателя, торможение и автоматический останов вальцев. Торможение индивидуальных и сдвоенных вальцев производится при помощи колодочного или ленточного тормоза, торможение вальцев с групповыми приводами -- при помощи специальной системы аварийного останова.

Системы аварийного останова вальцев должны обеспечивать возможно быстрое прекращение вращения валков и вывод посторонних предметов из области деформации путем включения обратного хода. Аварийные выключатели должны быть устроены так, чтобы их можно было привести в действие в любой момент с рабочего места как с передней, так и с задней стороны вальцев. Такие системы обычно состоят из штанг, конечных выключателей, переключателей, тормозных, блокирующих и других устройств. Каждая система аварийного останова вальцев должна иметь устройства, позволяющие выключить приводной электродвигатель(15) и затормозить машину (электромеханическое или электродинамическое торможение). При электромеханическом торможении после нажатия на штангу, рабочий отключает электродвигатель(15) привода машины и одновременно включает механический тормоз(16) для остановки вращающихся по инерции частей привода. Электродинамическое торможение предусматривает переключение цепи приводного электродвигателя и создание в его якоре противоположно направленного электродинамического момента.

В соответствии с ГОСТ 14333--79 расстояние от уровня пола до оси штанги аварийного устройства всех современных производственных вальцев должно быть в пределах 900--1200 мм. Кратчайшее расстояние от штанги аварийного устройства до образующей валка должно быть в пределах 300--500 мм. Путь торможения валков после аварийного останова незагруженных вальцев не должен превышать 0,25 оборота валка при максимальной скорости. После аварийного останова вальцев, имеющих электромеханический привод, механизм регулирования зазора должен осуществить автоматическую раздвижку валков не менее чем на 25 мм со скоростью не ниже рабочей скорости регулирования зазора.

На рис.3 представлен современный аварийный выключатель(5) вальцев. Штанга закреплена в шарнирах-подшипниках и расположена перед передним, а иногда перед задним валком. При нажатии на штангу рожки отжимают пружину и давят на рычаги путевых малогабаритных переключателей типа ВКП-711. Рабочий ход кнопки переключателя ВКП-711 равен 2,2--2,5 мм при усилии нажатия на штангу более 2,5 Н (0,25 кгс). Величину усилия, необходимого для остановки вальцев, можно регулировать при помощи пружин. Тормозные устройства систем аварийного останова вальцев служат для поглощения кинетической энергии движущихся частей машины в период ее остановки. В валковых машинах применяются двухколодочные и ленточные тормоза.

Надежность работы механизма аварийного останова оценивается величиной поворота валков после отключения электродвигателя при незагруженных вальцах. При загруженных резиновой смесью вальцах поворот валков после отключения электродвигателя практически должен быть равен нулю. Максимальный путь пробега переднего валка по периметру бочки валка при незагруженных вальцах должен быть не более 0.25 оборота валка.

Рис. 3.

Валки и валковые подшипники скольжения охлаждаются проточной водой. В полости валков смонтировано охлаждающее устройство, состоящее из трубы с отверстиями (направленными в сторону зазора между валками), воронки(10) и ванны(11). Вода, подаваемая в трубу под давлением, вытекает через отверстия, орошает внутреннюю полость валка и сливается через открытый конец валка и воронку в ванну. Смазка валковых подшипников скольжения -- жидкая централизованная или индивидуальная -- осуществляется при помощи масляного насоса (лубрикатора). Смазка подшипников качения -- густая -- подается к подшипникам при помощи масляной станции. Смазка приводных и фрикционных шестерен, а также червячных пар осуществляется погружением нижней части колес в масляную ванну, расположенную под ними. Вальцы снабжаются приборами управления электродвигателем и автоматическими устройствами, которые для индивидуальных и сдвоенных вальцев устанавливаются в специальном шкафу, а для вальцев с групповым приводом -- на щите управления.

Обработка резиновых смесей на вальцах является достаточно энергоемким процессом. Энергия, потребляемая электродвигателем вальцев, расходуется на преодоление напряжений сдвига сопротивления в элементах передач и подшипниках и на преодоление сил сопротивления деформированию обрабатываемого материала (вязкое течение, упругая и высокоэластическая составляющие деформации).

вальцы резиновый полимерный сырье


Рис. 4.

1 -- корпус валка; 2 -- труба с отверстиями; 3 -- направляющий диск; 4 -- сливна.я воронка; 5 -- распределительная втулка; 6 -- гайка; 7 -- сальник; 8 -- направляющая втулка; 9 -- заглушка. где W-- расход воды; с2 -- удельная массовая теплоемкость воды; txи t2 -- температура воды на входе и выходе; К -- коэффициент теплопередачи; А^ср -- средняя разность температру.

Для предотвращения возможности возрастания температуры обрабатываемого материала выше допустимого значения и отвода избыточного количества теплоты на вальцах предусмотрена система водяного охлаждения. Охлаждению подвергаются валки вальцев. В старых конструкциях вальцев охлаждению водой подвергались также корпусы подшипников скольжения. В зависимости от способа отвода охлаждающей воды из полости валков вальцев различают два способа охлаждения: открытый (рис. 4, а) и закрытый (рис. 4,6). При открытом способе охлаждения валков вальцев (рис. 4, а) вода под давлением поступает во внутреннюю полость валка по трубе 2. По длине трубы 2 имеются отверстия диаметром 2--5 мм, направленные в сторону области деформации вальцев; шаг между отверстиями 100--125 мм. Иногда в отверстия трубы вворачиваются на резьбе специальные насадки -- сопла для направления и разбрызгивания струи воды.

Охлаждающая вода подается из отверстий неподвижной трубы на верхнюю часть внутренней поверхности полосы вращающегося валка и стекает по его стенке. В нижней части полости валка собирается некоторое количество воды до определенного уровня. Далее вода через отверстие в направляю щем диске 3 сливается через воронку 4 в специальный сборник и затем в канализацию. Неподвижная внутренняя труба не вращается и соединяется с водопроводом при помощи резинового шланга (для переднего валка), допускающего некоторое перемещение валка при изменении величины зазора.

Закрытый способ охлаждения валков вальцев (рис. 4, б) заключается в том, что охлаждающая вода поступает по трубе 2 (с отверстиями) в полость валка и заполняет ее полностью. Из полости валка вода при помощи специального устройства отводится в канализацию или в оборотную систему водоснабжения. При открытом способе отвода охлаждающей воды обеспечивается более интенсивное охлаждение за счет увеличенной скорости движения воды по поверхности теплообмена; система охлаждения валков с закрытым сливом более сложна по конструкции и в эксплуатации. Поэтому наибольшее распространение получила система охлаждения вальцев с открытым сливом.

Конструкции основных деталей узлов и механизмов

Валки являются основными рабочими деталями вальцов и каландров. Среднюю часть валка, соприкасающуюся с перерабатываемым материалом, называют бочкой (рис. 5). По обе стороны от бочки расположены шейки (цапфы) валка, которыми он опирается на подшипники. Концевые части валка имеют шлицевые или шпоночные канавки. Бочки валков выполняют гладкими или рифлеными, в зависимости от назначения машины. Бочка валков, кроме того, может быть цилиндрической или бочкообразной (бомбировка) для компенсации прогиба ее от распорных усилий, возникающих при вальцевании или каландрировании. Бомбировка удорожает изготовление валков, поэтому для компенсации прогиба лучше применять перекрещивание валков. Для подачи теплоносителя валок выполняют полым или с каналами, что улучшает условия теплообмена. Периферические каналы равномерно располагаются по окружности, на расстоянии 25--40 мм от поверхности валка (диаметр каналов -- 30--40 мм).

Основными параметрами, характеризующими размеры валков и машину в целом, являются номинальный диаметр бочки валка и ее длина. Из условий обеспечения необходимой жесткости длину бочки валка принимают не более 2,5--4,0 D (D --диаметр валка), а диаметр шейки--0,5 D (в случае применения подшипников качения эту величину уменьшают). При конструировании валков необходимо учитывать, что их размеры нормализованы.


Рис.5.

а -- валок вальцев передний; б -- валок вальцев задний;

Теплоноситель поступает внутрь трубы (21) и вытекает в полость валка по правую сторону от уплотнительного поршня (25), который разделяет внутреннюю часть валка на две полости. Попав в правую полость, теплоноситель, поступает по наклонным каналам, просверленным в корпусе (26) валка; каждый канал соединен с горизонтальным каналом охлаждения(28), проходящим на глубине 50 мм от наружной поверхности бочки. Пройдя по этим каналам, теплоноситель входит в левые наклонные каналы и через левую полость охлаждения направляется на слив. С торца бочки валка каналы (наклонные и горизонтальные) закрыты кольцом, под которым проложена паронитовая прокладка.

Условия работы подшипников вальцов и каландров весьма тяжелые. В некоторых машинах нагрузка на подшипник достигает 60 тс. В валковых машинах применяют подшипники качения и скольжения (последние -- при больших нагрузках, а также в прецизионных каландрах, например, при производстве тонких пленок).

На (рис.6) показан подшипниковый узел. Радиальные сферические роликоподшипники 9 установлены на конических цапфах валка. Левый подшипник закреплен жестко, правый -- может смешаться по оси при температурных деформациях. Система смазки подшипников централизованная. Масло подается в верхнюю часть корпуса 8, стекает и отводится из нижней части корпуса. Левый подшипник регулируется при помощи крышки 7, установочных колец 4, прокладок 5 и фланца 6, который через лабиринтное кольцо 3, воздействует на внутреннее кольцо подшипника. Правый подшипник фиксируется гайкой 1, поджимающей лабиринтное кольцо. Гайка 1 вращается на резьбовых полукольцах 2 и фиксируется винтом.


Рис. 6.

В случае особенно тяжелых условий работы (при больших распорных усилиях) возможно применение многорядных радиально-упорных роликоподшипников.

Станины валковых машин воспринимают статические и динамические нагрузки, возникающие при работе, обеспечивают неизменность относительного положения смонтированных на них узлов и деталей, снижают (гасят) амплитуды колебаний, передают нагрузки на опорные плиты или фундаменты. Обычно станина -- самый тяжелый узел машины.

При конструировании станин особое внимание необходимо уделять ее прочности и износостойкости. Изнашиваемые части станин (например, направляющие) желательно изготовлять в виде сменных, легко заменяемых деталей.

Масса станин вальцов и каландров достигает соответственно 20 и 50 т. Поэтому при конструировании станин нужно учитывать условия транспортирования и монтажа машин. В ряде случаев необходимо проектировать тяжелые станины составными. Наиболее надежным методом является соединение частей станины на фундаментной плите, увеличивающей жесткость системы и равномерно распределяющей силу тяжести машины на опорной поверхности фундамента. При изготовлении литых стальных или чугунных станин особое внимание следует уделять снятию остаточных напряжений, возникающих в местах, где имеются приливы, фланцы, выступы и т. д. Эти элементы желательно проектировать съемными, с креплениями на болтах. Отверстия в станине нежелательно выполнять с резьбой (в чугуне резьба часто выкрашивается). Лучше устанавливать на прессовой посадке сменные стальные втулки с внутренней резьбой.

Станины вальцов бывают обычно двух типов -- закрытые и открытые. В первом случае это цельная чугунная отливка. Основной недостаток таких станин -- необходимость полного демонтажа вальцов в случае поломки верхней траверсы, воспринимающей большие усилия. Поэтому лучше устанавливать открытые станины. Они состоят из двух частей: основания и верхней траверсы, скрепляемых болтами. В современных каландрах обычно применяют цельные станины закрытого типа с боковыми проемами, ширина которых на 50--80 мм превышает максимальный диаметр валка. Это позволяет вынимать и заводить валки через окна без применения дополнительных монтажных устройств. Для увеличения жесткости конструкции и поддержания параллельности осевых плоскостей станины связывают снизу фундаментной плитой, а сверху -- специальной траверсой, расположенной параллельно осям валков. В отдельных случаях применяют стальные тяги или распорные трубы.

Ограничительные стрелы определяют объем рабочего пространства валков между подшипниками, препятствуют «расползанию» обрабатываемой массы и таким образом предохраняют от нее подшипники. Ограничительные стрелы представляют собой металлические перегородки, укрепляемые неподвижно или перемещаемые вдоль образующей валков. Каждая стрела состоит из двух половин, которые тщательно подгоняют к поверхности валка. На (рис.7) показаны передвижные ограничительные стрелы, устанавливаемые на вальцах. На корпусах подшипников валков подшипники 1 закреплены болтами 2. Через отверстия в подшипниках проходят валик 3, неподвижно закрепленный болтами 4 в подшипниках 1, и валик 5, установленный в дистанционных кольцах 6. Кольца позволяют валику 5 вращаться в подшипниках. На валиках установлены подвески 7 для стрел: на валике 3 по скользящей посадке, а на валике 5 с помощью резьбовой втулки 8.


Рис. 7.

При вращении маховичка 9, посаженного неподвижно на валик 5, подвески 7 могут перемещаться к центру или от центра, сокращая или увеличивая Площадь рабочей поверхности валка. На подвесках закреплены стрелы 10, на концах стальных стрел установлены скребки 11 из латуни. Вследствие износа между поверхностью валка и торцом стрелы образуется зазор. Этого недостатка лишены стрелы с пружиной, устанавливаемой между основанием стрелы и самой стрелой; стрелы прижимаются к валку при помощи пневмоцилиндров с усилием 100--250 кгс.

Пластинчатые или дисковые ножи устанавливают в державках, которые укреплены на поддоне или кронштейнах, а иногда непосредственно на станинах валковых машин. Регулирующими винтами или пружинами ножи прижимаются вплотную к поверхности валка или съемного валика. Ножи срезают массу пластического материала в виде полос заданной ширины, отрезают кромки при изготовлении пластмассового листа, пленки, различных типов линолеума и т. д. В зависимости от количества ножей и их взаимного расположения с валковой машины срезается одна или несколько полос материала заданной толщины.

Вальцы могут иметь индивидуальный и групповой приводы. В первом случае от электродвигателя вращение на вальцы передается через цилиндрический или цилиндро-конический редуктор. Для сдвоенных вальцов также можно применять цилиндро-конический редуктор. Для вальцов группового исполнения (2, 3, 4 и более) применяют привод с использованием асинхронных или синхронных (тихоходных) электродвигателей. В этом случае выходной вал общего редуктора передает вращение сразу на несколько вальцов, которые имеют индивидуальные цилиндрические зубчатые пары.

В новых конструкциях вальцов применяют приводы с блок-редукторами и шарнирными шпинделями (по типу приводов каландров). Использование подобных приводов позволяет разгрузить валки и станины от изгибающих моментов, возникающих при передаче крутящего момента зубчатыми колесами. Применение шарнирных шпинделей упрощает системы регулирования зазора валков (не требуется изготовление цилиндрических колес с корригированными зубьями).

Блок-редукторы для вальцов выполняют с двумя выходными тихоходными валами (типа БВ).

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png

Разрешается копирование материалов сайта с обязательной ссылкой на ddbig.ru